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Clinical Expression of Leber Hereditary Optic Neuropathy Is
Affected by the Mitochondrial DNA-Haplogroup Background
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Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial
DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the patho-
physiology of the disorder. Both the 11778G—A and 14484T—C LHON mutations are preferentially found on a specific
mtDNA genetic background, but 3460G—A is not. However, there is no clear evidence that any background influences
clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show
that the risk of visual failure is greater when the 11778G—A or 14484T—C mutations are present in specific subgroups
of haplogroup J (J2 for 11778G—A and ]J1 for 14484T—C) and when the 3460G—A mutation is present in haplogroup K.
By contrast, the risk of visual failure is significantly less when 11778G—A occurs in haplogroup H. Substitutions on
MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked
effect on the expression of an ostensibly monogenic mtDNA disorder.

Leber hereditary optic neuropathy (LHON [MIM 535000])
is a common cause of maternally inherited visual failure
that affects at least 1 in 14,000 males." LHON typically
presents during young adulthood with dyschromatopsia
followed by a subacute painless loss of vision in one eye,
with symptoms developing in the other eye 6-12 wk after
the initial onset.>* In >95% of cases, LHON is due pri-
marily to one of three point mutations of mtDNA that
affect genes coding for different subunits of complex I of
the mitochondrial respiratory chain: 3460G—A in MTND1,
11778G—A in MTND4, and 14484T—C in MTND6.* How-
ever, not all individuals who inherit a primary LHON
mtDNA mutation will develop the optic neuropathy, which
indicates that additional environmental or genetic factors
are important in the etiology of the disorder.>**
Numerous anecdotal reports have linked the onset of
blindness with various environmental insults, including
excess alcohol consumption and smoking.”® In addition,
the analysis of large pedigrees followed over decades sug-
gests that the penetrance of the primary LHON mutations

may be decreasing in some families, possibly through an
improved diet and reduced tobacco and alcohol consump-
tion.” However, rigorous cross-sectional epidemiological
studies reached different conclusions,’ and the role of
environmental agents has yet to be established.

By contrast, evidence supporting an additional genetic
influence is more compelling. Although the majority of
individuals with LHON inherit mutated mtDNA only from
their mother and thus are homoplasmic for the primary
mtDNA LHON mutation, some subjects harbor a mixture
of mutated and wild-type mtDNA (heteroplasmy).'* Ret-
rospective studies suggest that the risk of visual failure is
reduced in family members with <60% mutated mtDNA
in their blood.""'* Heteroplasmy cannot, however, explain
the marked sex bias in LHON, which affects predomi-
nantly males. Segregation analysis is consistent with an
interacting recessive X-chromosomal locus in some fam-
ilies,"* which is supported by the results of genetic linkage
analysis implicating an ~6-cM region of the X chromosome
that is likely to contain an interacting nuclear modi-
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fier.™ Finally, there is a well-established strong association
between the mtDNA genetic background and both the
11778G—A and 14484T—C mutations but not 3460G—A.'>'

mtDNA is inherited through the maternal line, is highly
polymorphic, and can be divided into haplogroups on the
basis of the presence of specific combinations of distin-
guishing mutations scattered throughout its entire se-
quence. mtDNAs belonging to the same haplogroup de-
rive by descent from the same ancestral female, as revealed
by the sharing of the distinguishing mutational motif.'”
'® Meta-analysis of the available data has shown that in-
dividuals with the 14484T—C mutation are >27-fold more
likely to belong to western Eurasian haplogroup ] than are
control subjects and that individuals with the 11778G—A
mutation are >3-fold more likely to belong to haplogroup
J than are control subjects.” This has been observed in
different western Eurasian populations in genetically dis-
tinct pedigrees, which indicates that this is not a founder
effect.’>?° The reasons for the association are not clear, but
the association may relate to functional variants in the
MTCYB gene interacting synergistically with the primary
LHON mutation, leading to further compromise of com-
plex I function.?" If this is the case, then the clinical pene-
trance of both the 11778G—A and the 14484T—C muta-
tions should be increased on a haplogroup ] background—
but this hypothesis has not been formally tested. Intri-
guingly, in one pedigree, 14484T—C had a low penetrance
on a haplogroup H background,” which raises the possi-
bility that other mtDNA haplogroups might alter pene-
trance of the primary LHON mutations in a mutation-
specific manner.

The three primary LHON mutations were identified al-
most 2 decades ago, but, despite major advances in our
understanding of the molecular pathophysiology of LHON,
clinical management has remained largely the same. Mo-
lecular genetic testing and genetics counseling based on
empirical recurrence risks have changed little in the past
decade. Given the potential role of mtDNA haplotypes
in the penetrance of LHON, we performed a multicenter
study of 3,613 subjects from 159 different families trans-
mitting the 3460G—A, 11778G—A, and 14484T—C muta-
tions. By defining the role of each haplogroup in LHON,
we hoped to improve the accuracy of genetics counseling
for LHON and also to advance our understanding of mtDNA
genetic variation and its role in complex disease. Using
this approach, we also formally explored the possibility
that the penetrance of LHON is changing over time.

Material and Methods

Pedigrees were identified through a pan-European collaboration
and were anonymously entered into a central database. To min-
imize ascertainment bias, we did not analyze singleton cases (i.e.,
pedigrees with one affected individual). Extensive pedigree anal-
ysis was performed at each center. Sibships were included only if
there was one affected individual and/or the mother harbored a
primary LHON mtDNA mutation. The clinical phenotype was

determined by a local ophthalmologist. Unaffected individuals
had no visual symptoms. Previous studies have included unaf-
fected subjects only if they had no symptoms after reaching a
specific age (typically 30 years, given the median age of ~24 years
for visual failure in LHON). This would, however, introduce an
ascertainment bias into a study of this type, since only affected
individuals aged <30 years old would be included, elevating the
penetrance value. We therefore included all subjects, irrespective
of age, to assess the lifetime penetrance of the disorder. The pri-
mary aim of this study was to determine the effect of mtDNA
haplogroups on clinical penetrance, and we had no a priori reason
to think that this would be influenced by the age of subjects.

The diagnosis was confirmed in all studied affected individuals
by direct sequencing of the MTND genes or by PCR-RFLP analysis.
For the purposes of this study, we did not accurately quantify
heteroplasmy, and we classified sibships only as either (1) ho-
moplasmic, if the mother was shown to be homoplasmic by an
established technique, or (2) heteroplasmic, if one member of the
nuclear family had been shown to be heteroplasmic. Retrospec-
tive analysis omitting the heteroplasmic sibships did not influ-
ence the overall conclusions. mtDNA-haplogroup analysis was
performed either by PCR-RFLP analysis or by direct sequencing
of the mtDNA coding or control regions.'® Haplogroup J suban-
alysis was performed by direct sequencing across nucleotide po-
sitions 3010 (3010A in J1) and 15257 (15257A in J2), as described
elsewhere.”

We identified 3,613 individuals, including affected and unaf-
fected subjects, harboring a primary LHON mutation (11778G—~A
[n = 2,104, 58.2%]; 14484T—C [n = 851, 23.6%]; 3460G—A
[n = 658, 18.2%]) from 159 genealogically independent pedi-
grees (11778G—A [n = 90, 56.6%]; 14484T—C [n = 33, 20.8%];
3460G—A [n = 36, 22.6%]). Of the subjects, 48.9% were male
95% CI = 47.3%-50.6%, including affected and unaffected
males). These proportions are in concordance with those of other
published smaller series.* The mtDNA-haplogroup distribution
for each mtDNA LHON mutation is shown in table 1 and reflects
the well-established overrepresentation of haplogroup J in Eu-
ropean LHON-affected pedigrees. The complete data set is shown
in table 2. The sex was not known for four subjects who all be-
longed to the same 11778G—A haplogroup H family. Of the sib-
ships, 4.6% harbored at least one heteroplasmic individual.

Binary logistic regression was used to determine, simultane-
ously across the whole cohort, which variables influence the risk
of developing visual failure. This approach reduces the chance of

Table 1. Haplogroup Frequencies for the 3,613 Subjects
with the 11778G—A, 14484T—C, and 3460G—A Mutations

No. (%) of Subjects with
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mtDNA
Haplogroup® 11778G—A  14484T—C  3460G—A Total
H 927 (44) 2 (<1) 307 (47) 1,236 (34)
J 593 (28) 840 (99) 169 (26) 1,602 (44)
K 101 (5) 75 (11) 176 (5)
M 3 (<1) 3 (<1)
T 87 (4) 87 (2)
U (without K) 184 (9) 27 (4) 211 (6)
v .. 41 (6) 41 (1)
w 11 (<1) 11 (<1)
X 135 (6) 9 (1) 144 (4)
Other _ 63 (3) e 39 (6) 102 (3)

Total 2,104 851 658 3,613

* There were no haplogroup I families.
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Table 2.

Haplogroup Distribution of Affected and Unaffected Subjects with

the 11778G—A, 14484T—C, and 3460G—A Mutations

No. of Subjects with Mutation

11778G—A* 14484T—-C 3460G—A
Sex and mtDNA
Haplogroup Unaffected  Affected Unaffected Affected Unaffected Affected
Male:
H 289 155 1 112 36
J1 127 79 206 172 35 20
J2 34 36 38 18 15 16
K 30 17 18 15
T 21 25
U (without K) 51 36 8 4
\ 19 3
w 2 1
X 48 21 3 2
Other 21 1 e . 16 4
Total 623 381 248 192 223 98
Female:
H 437 42 1 141 18
J1 185 27 292 25 53
J2 90 15 86 3 22
K 47 7 31 11
T 40 1
U (without K) 86 11 14 1
\ . 17 2
W 5 3
X 62 4 4
Other 28 _6 . . 15 4
Total 980 116 383 28 293 44

* The sex was not known for four subjects (not included in the table), all belonging to the

same 11778G—A haplogroup H family.

type I error (false-positive result) and controls for differences in
the frequency of key variables among the different groups. Visual
failure was the dependent variable in the model, with the fol-
lowing independent categorical variables: sex, primary LHON
mtDNA mutation (modeled as a single categorical variable), pres-
ence of heteroplasmy, and mtDNA haplogroup. Since each hap-
logroup is an independent categorical variable associated with a
different cluster of haplotype-specific polymorphisms, we intro-
duced each haplogroup separately into the regression equation
while including all of the other potential confounding variables.
We studied only haplogroups present at >1% frequency across
the whole study group, in keeping with the “rule of thumb”
whereby logistic regression should be performed only when the
number of study subjects is 1 order of magnitude greater than
the number of parameters under study. To test the hypothesis
that the penetrance of primary LHON mutations has decreased
over the generations, we coded the present generation 1 and pre-
vious generations 2, 3, 4 ... n, thus allowing us to include sibship
generation as a continuous variable in the logistic-regression
model. If the penetrance of LHON were changing with subse-
quent generations, the model would identify a significant direct
correlation between penetrance and generation number.

Results

Before studying the mtDNA haplogroups, we initially in-
vestigated the effects of the other variables on the risk of
visual failure (table 3). As expected, the strongest predictor
of visual failure was sex, which was associated with a 5.41-

fold increased risk of blindness for males compared with
females. In addition, mtDNA heteroplasmy was associated
with a 0.37-fold reduced risk of visual failure when com-
pared with homoplasmic pedigrees. By contrast, there was
no difference in the risk of visual failure for the different
LHON mtDNA mutations (P = .70) nor any evidence to
support a change in penetrance in different generations
(P = .26).

Given the well-established mutation-specificassociation
with mtDNA haplogroup J,'* we studied separately the
effect of common mtDNA haplogroups on the risk of
visual failure for each LHON mtDNA mutation (see table
4 for the results of the logistic regression and table 2 for
the complete data set). For 11778G—A, the risk of visual
failure was increased for pedigrees with a haplogroup J
background (P = .02; odds ratio [OR] = 1.31; 95% CI =
1.03-1.65) but was reduced in pedigrees with a haplo-
group H background (P =.04; OR =0.79; 95% CI =

Table 3. Major Factors Influencing the Clinical
Penetrance of the 11778G—A, 14484T—C, and
3460G—A Mutations in 3,613 Subjects

Variable P OR 95% (I
Sex 9.27 x 1077®*  5.41  4.52-6.48
LHON mutation .70

Heteroplasmy 1.37 x 10°* .37 .22-.62
Pedigree generation .26 .97 .90-1.01
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Table 4. Effect of mtDNA Haplogroups on the Clinical
Penetrance of the 11778G—A, 14484T—C, and 3460G—A
Mutations

Mutation and

mtDNA Haplogroup P OR 95% (I
11778G—A:
H .04 .79 .63-.98
J .02 1.31 1.03-1.65
K .97 .99 .60-1.63
T .31 1.30 .79-2.14
U (without K) .59 1.11 .76-1.60
X .05 .62 .39-1.0
14484T-C:
H 1.0 1.49 x 10°° 0
J .40 2.06 .40-10.66
X .60 .64 .12-3.53
3460G—A:
H .14 .72 47-1.11
J .34 1.24 .80-1.90
K 2.35 x 107° 2.37 1.36-4.13
U (without K) .60 .76 .27-2.10

NoTe.—Binary logistic-regression model with visual failure as the de-
pendent variable. The following independent variables were included in
each model: sex, presence of heteroplasmy, and pedigree generation
(see table 1). The effect of the major European mtDNA haplogroups was
modeled in turn, adding each sequentially to the logistic-regression
equation. No 14484T—C pedigrees belonged to haplogroups K, T, or U,
and no 3460G—A pedigrees belonged to haplogroup T or X.

0.63-0.98). For 3460G—A, the risk of visual failure was
increased in pedigrees with a haplogroup K background
(P=2.35x%x10% OR = 2.37; 95% CI = 1.36-4.13).

We were initially surprised that the analysis did not iden-
tify an association between 14484T—C and haplogroup J
(table 4). However, the lack of increased risk of visual fail-
ure among the 840 subjects with the 14484T—C mutation
on haplogroup ] is most likely to be a consequence of the
virtual absence of non-J pedigrees (only 11 subjects, ~1%)
(table 1). Given the fact that haplogroup J frequencies are
in the range of 3%-15% in European populations,* the
99% frequency of 14484T—C on ] mtDNAs observed in
this study (table 1) strongly suggests that the clinical pen-
etrance of the 14484T—C mutation is close to zero when
occurring on European mtDNA backgrounds other than
J. The 14484T—C mutation and the pedigrees in which it
occurs remain undetected simply because LHON does not
show up in the family when the mtDNA belongs to a non-
J haplogroup. This scenario is supported by the finding of
a U8b mtDNA harboring the 14484T—C mutation in the
course of a random survey of U mtDNAs from unaffected
subjects.”® Moreover, recent work has also shown that the
preferential association between LHON-affected pedigrees
with the 14484T—C mutation and ] is attributable largely
to J1, a specific subgroup of haplogroup J.*' We therefore
compared the clinical penetrance of the 14484T—C mu-
tation on the J1 background with that on the ]2 back-
ground. We observed a 1.85-fold increased risk of visual
failure for J1 relative to J2 (P = 2.3 x 10°% 95% CI =
1.09-3.15), in agreement with the observation that 28.3%
of the J1 subjects versus only 14.5% of the J2 subjects are

clinically affected (table 1). The same kind of comparison
(J2 vs. J1) was performed for the 11778 G—~A mutation. In
that case, the situation was just the opposite, with J2 har-
boring a 1.73-fold increased risk of visual failure (P =
1.7 x 1073 95% CI = 1.10-2.72) relative to J1.

Discussion

By studying 3,613 individuals from 159 pedigrees, we pro-
vide the first clear evidence that different mtDNA haplo-
groups influence the clinical penetrance of the three pri-
mary LHON mtDNA mutations. We made four principal
observations: (1) the penetrance of 14484T—C is increased
on a haplogroup J background, most prominently on the
J1 subhaplogroup; (2) the penetrance of 11778G—A is also
increased on a haplogroup J background, but, for this mu-
tation, the effect is most prominent on the J2 subhaplo-
group; (3) the penetrance of 11778G—A is reduced on a
haplogroup H background; and (4) the penetrance of
3460G—A is increased on a haplogroup K background.

The increased penetrance of 14484T—C and 11778G—A
on different J subhaplogroups is in keeping with previous
haplogroup-association studies reporting an increased fre-
quency of haplogroup J1 in 14484T—C pedigrees and an
increased frequency of J2 in 11778G—A pedigrees.”' It is,
however, most intriguing that closely related subhaplo-
types appear to have different effects on the two most com-
mon LHON mtDNA mutations. For 3460G—A, the most
striking novel finding was the marked increased risk of
visual failure when the mutation was on the haplogroup
K background. This was not apparent in 11778G—A ped-
igrees, despite a greater number of subjects (table 1). In
keeping with this, haplogroup K subjects were overrepre-
sented in the 3460G—A group (11%, which is greater than
the frequency in most published European data sets®).
The 3460G—A mutation was the least common in our sam-
ple (18% of subjects), and some haplogroups were not
represented (table 1), which limited statistical power and
our ability to confidently interpret a slight tendency to-
ward increased penetrance of 3460G—A on haplogroup J2
and a reduced penetrance on haplogroup H. Finally, al-
though the reduced penetrance on a haplogroup H back-
ground has been described in a single 14484T—C family,’
this has not been described elsewhere for 11778G—A. To-
gether, these findings demonstrate that the clinical pene-
trance of LHON mtDNA mutations depends on the back-
ground mtDNA haplotype, implicating epistatic genetic
mechanisms that modulate the biochemical defect of
complex I that underpins the pathophysiology. How can
we explain these observations?

Relative to the root of the superhaplogroup R, haplogroup
H is defined by the synonymous T7208C and A11719G,
the nonsynonymous T14766C in the cytochrome b gene
(MTCYB, cyt b 17T), and the 12S rRNA gene substitution
G2706A.>* Variation in the mtDNA rRNA genes can alter
susceptibility to the organ-specific nonsyndromic deafness
through a gene-environment interaction,* and it is con-
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ceivable that different polymorphisms in the same gene
might reduce susceptibility to environmental precipitants
of the acute visual failure caused by LHON. Alternatively,
genetic variation in the MTCYB gene might be responsible.
Recent phylogenetic analysis has shown that MTCYB mu-
tations are overrepresented on both J1 and J2 subhaplo-
groups and that J1c and J2b are the principal clades re-
sponsible for the association with 11778G—A, whereas J1
is associated with 14484T—C.*! In addition to the 15452C—~
A substitution (MTCYB L236I) common to all haplogroup
J mtDNAs, J1c harbors an additional MTCYB substitution
(14798T—C/F18L), and J2b also carries two additional
MTCYB substitutions (15257G—A/D171N and 15812A—-G/
V356M).*!

Is this explanation consistent with the increased risk of
visual failure in 3460G—A families on a haplogroup K back-
ground? The MTND3 10398 reversion is shared by both
haplogroups J and K (and I) and has been proposed as
the functional variant responsible for the decreased risk
of Parkinson disease associated with these two haplo-
groups.”>* However, like J1c, haplogroup K is defined
by MTCYB 14798T—C/F18L, in keeping with the MTCYB
hypothesis explaining the haplogroup associations for
LHON.?' Although the association with MTCYB substitu-
tions could be a chance finding,*' recent evidence sup-
porting the existence of supercomplexes, consisting of
complex I and dimeric complex III,?® raises the possibility
that genetic variation in MTCYB might alter complex I
function, possibly by destabilizing the assembled super-
complex.” Differences in the amino acid sequence of cyt
b (through subhaplogroup-specific polymorphisms), ND1,
ND4, and ND6 (through primary LHON mutations and
subhaplogroup-specific polymorphisms) could alter the
known physical interaction between complexes I and III,*°
leading to the loss of complex I activity, as has been ob-
served in a patient with an MTCYB mutation.’'** Likewise,
it is also conceivable that the I-III supercomplex could be
relatively stabilized by specific cyt b substitutions (in hap-
logroup H), although there is no experimental data to sup-
port this possibility at present. An alternative explanation
is that specific substitutions in MTCYB lead to a subtle
biochemical defect that adds to the systemic complex I
deficiency because of the primary LHON mutations af-
fecting complex I (MTND) genes.

Differences in the size of individual pedigrees are one
possible confounding factor in a study of this kind. To
minimize ascertainment bias, we excluded singleton cases
from this study. In addition, for the major haplogroup
effects, we obtained the same result when the study pop-
ulation was subdivided into small pedigrees (2-5 genera-
tions) or large pedigrees (>5 generations). The lack of a
clear relationship between penetrance and the pedigree
generation is surprising, especially given the size of this
study and the extensive clinical data from a large number
of generations. The major improvement in the socioeco-
nomic scene in Europe and a corresponding improvement
in nutritional status imply that a simple improvement in

these variables is unlikely to reduce the penetrance of
LHON. This and other studies'® highlight the difficulty of
establishing a link between LHON and major environmen-
tal precipitants.

Given the marked geographic variation in specific
mtDNA subhaplogroups, it is conceivable that an associ-
ation may be important in one country but not another.
For example, the absence of J1c from the Iranian popu-
lation probably explains why the association between
LHON and haplogroup J is not seen in Iran.”* This poses
a challenge when it comes to genetics counseling and
highlights the importance of performing further studies
to determine the basis of the varied penetrance. We have
shown that a number of variables modulate the clinical
expression of LHON, and smaller studies should be inter-
preted with great caution, because of the possibility of
confounding factors. Defining these factors will, however,
have a major impact on the clinical management of fam-
ilies transmitting this disorder.
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